STEM Workshop: Graphics

Lesson 2: Python Turtle Graphics

Brought to you by the University of Maryland Balloon Payload Program!

https://repl.it/languages/python_turtle

Introduction to Python Turtle

- Turtle is a built-in Python library
 - A library is a set of premade programs and functions so that you don't have to make them yourself from scratch
- Lets us create graphics on virtual canvas
- The pen/arrow used for drawing is called the "Turtle"
- Turtle has characteristics that you can change (e.g. direction, size, color, speed)
- Create the Python environment and initialize the turtle screen

Turtle Screen

- It's like a canvas, to draw on
- Works like the coordinate plane/graph
- MATH!!!!
- Turtle/Pen starts at "home" (0, 0)

Turtle Controls

- 4 directions: forward, backward, left, right

turtle.forward()
turtle.backward()
turtle.left()
turtle.right()

turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.forward(100)
turtle.left(90)
turtle.left(90)
turtle.forward(100)

Drawing Shapes

1 import turtle 2 Screen = turtle.Screen()

#circle

turtle.pu()#pen up turtle.goto(-75,75)#goes to coordinate turtle.pd()#pen down turtle.color("red")#set pen color turtle.circle(50,360)#radius of 50 #triangle
turtle.pu()
turtle.goto(75,75)
turtle.pd()
turtle.color("blue")
turtle.circle(50, 360, 3)

#pentagon turtle.pu() turtle.goto(-75,-75) turtle.pd() turtle.color("purple") turtle.circle(50,360,5) #square turtle.pu() turtle.goto(75,-75) turtle.pd() turtle.color("yellow") turtle.circle(50,360,4)

Circle

to draw

Ready to move the pen

Draws a circle with radius 50 starting at the point (-75, 75)

Triangle

#triangle
turtle.pu()
turtle.goto(75,75)
turtle.pd()
turtle.color("blue")
turtle.circle(50, 360, 3)

3 sides = Triangle

- 1. Picks the pen up
- 2. Moves the pen to desired coordinates
- 3. Puts the pen down at that spot, ready to draw
- 4. Chooses pen color (blue)
- 5. Draws triangle at (75, 75)

Square

#square

turtle.pu()
turtle.goto(75,-75)
turtle.pd()
turtle.color("yellow")
turtle.circle(50,360,4)

Picks the pen up
 Moves the pen to desired

- coordinates
- 3. Puts the pen down at that spot, ready to draw
- 4. Chooses pen color (yellow)
- 5. Draws Square at (75, -75)

4 sides = Square

Pentagon

#pentagon turtle.pu() turtle.goto(-75,-75) turtle.pd() turtle.color("purple") turtle.circle(50,360,5)

5 sides = Pentagon

- 1. Picks the pen up
- 2. Moves the pen to desired coordinates
- 3. Puts the pen down at that spot, ready to draw
- 4. Chooses pen color (purple)
- 5. Draws Square at (-75, -75)

Olympics Logo

- Consider the following:
 - Shape
 - Color
 - Size
 - Location/position

Hint:

#circle

turtle.pu()#pen up turtle.goto(-75,75)#goes to coordinate turtle.pd()#pen down turtle.color("red")#set pen color turtle.circle(50,360)#radius of 50

Olympics Logo Code

```
import turtle
 1
     screen = turtle.Screen
 2
 3
 4
    turtle.pensize(3)
     turtle.pencolor("green")
 5
     turtle.circle(50)
 6
 7
 8
     turtle.penup()
 9
     turtle.setposition(-120, 0)
10
     turtle.pendown()
     turtle.pencolor("yellow")
11
     turtle.circle(50)
12
```

13	<pre>turtle.penup()</pre>				
14	<pre>turtle.setposition(60, 60)</pre>				
15	<pre>turtle.pendown()</pre>				
16	<pre>turtle.pencolor("red")</pre>				
17	<pre>turtle.circle(50)</pre>				
18					
19	<pre>turtle.penup()</pre>				
20	<pre>turtle.setposition(-60, 60)</pre>				
21	<pre>turtle.pendown()</pre>				
22	<pre>turtle.pencolor("black")</pre>				
23	turtle.circle(50)				
24					
25	<pre>turtle.penup()</pre>				
26	turtle.setposition(-180, 60)				
27	<pre>turtle.pendown()</pre>				
28	<pre>turtle.pencolor("blue")</pre>				
29	turtle.circle(50)				

Loops

- Loops: set of instructions that are continuously repeated *until something happens*
 - Types: 'for' loops, 'while' loops

			000	Python Turtle Graphics
Loo	ping Exan	nple		
	<pre>n = 10 while n <= 40: turtle.circle(n) n = n + 10</pre>			
	n = 10	10 <= 40		,
Trace Table:	n = 20	20 <= 40		
	n = 30	30 <= 40		
	n = 40	40 <= 40 Stops		

Spirographs


```
import turtle
screen= turtle.Screen()
turtle.speed(0)
```

a=0

1

2

5

6

78

9

10

11 12

13

while (a < 36): turtle.forward (100) turtle.left(120) turtle.forward(100) turtle.left(120) turtle.forward(100) turtle.left(130) a = a+1

Challenge: Drawing Spirographs

Spirographs Code

There are **MANY** solutions, this code is just a possible one :)

```
import turtle
 1
 2
     Screen = turtle.Screen()
 3
 4
     Screen.bgcolor('black')
 5
     turtle.pensize(2)
     turtle.speed(10)
 6
 7
 8
     for i in range(6):
 9
       for color in ('red', 'magenta', 'blue', 'cyan', 'green', 'white', 'yellow'):
         turtle.color(color)
10
11
         turtle.circle(50)
         turtle.left(10)
12
```


Other Repls:

Activity #1: Shapes

https://repl.it/@EddieFang/Activity-1-Shapes#main.py

Activity #2: Concentric Circles

https://repl.it/@EddieFang/Turtle-Activity-2b-Concentric-Circles#main.py

Activity #3: Solar System

https://repl.it/@EddieFang/Turtle-Activity-3-Solar-System#main.py

