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High-altitude scientific balloons provide an accessible platform for investigating atmo-
spheric phenomena and validating engineering technologies in demanding environmental
conditions. To safely conduct ballooning operations, operators must consider the risk that
their balloon will fly through restricted airspace or that the payloads will land in some im-
permissible, inconvenient, or otherwise undesirable location. Since high-altitude balloons are
unguided, such assessment depends on accurate trajectory forecasting. This paper outlines
the development of a new balloon trajectory model that uses Monte Carlo techniques to esti-
mate the uncertainty in the balloon’s landing location. The flight dynamics of high-altitude
scientific balloons are discussed, as are uncertainties affecting a balloon’s flight. The Monte
Carlo-based method for propagating these uncertainties along the trajectory of the balloon is
then presented.

Nomenclature

a = albedo Subscripts: =
c = specific heat ∞ = free-stream
el = solar elevation angle g = lifting gas
g = acceleration due to gravity f = canopy
m = mass ca = convection with the atmosphere
v = velocity cg = convection with the lifting gas
r = canopy radius IR = infrared
re f f = effective reflectivity atm = atmosphere
z = altitude
BC = ballistic coefficient
Cd = drag coefficient
Fb = buoyant force
Fd = drag
Fw = weight
I = irradiance
ÛQ = heat flux

Re = Reynolds number
Re = Radius of the Earth
T = temperature
V = canopy volume
α = absorptivity
λ = longitude
µ = dynamic viscosity
ρ = density
σ = Stefan-Boltzmann constant
τ = transmissivity
φ = latitude
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I. Introduction

HIGH-altitude scientific balloons are important tools for research and education. Consisting of a latex or plastic
canopy that encloses a volume of lifting gas (hydrogen or helium), balloons provide a relatively simple, inexpensive

platform to access the upper troposphere and lower stratosphere. Even the shortest balloon flights can last 90 minutes or
more, significantly exceeding the duration of a sounding rocket flight, and certain balloons can stay aloft for several
weeks at a time. Payloads suspend below the balloon are exposed to harsh conditions of less than 1% of sea-level
atmospheric pressure and temperatures as much 70 K colder than on the ground.

One distinguishing characteristic of balloons is their limited, if not nonexistent, capability to control their trajectory.
While planes and rockets rely on an active propulsion system and control surfaces to maneuver, balloons are passive. The
ascent rate is controlled by the amount of lifting gas on board and the mass of the payload, while the horizontal motion
is dictated by the wind. Even the most sophisticated balloon systems have only limited control over their trajectory,
generally achieved by adjusting the shape of the canopy, venting lifting gas overboard, or jettisoning ballast. While such
measures can influence the ascent or descent rate, they have little impact on the lateral motion.

This limitation of balloons makes a priori prediction of balloon trajectories a topic of considerable importance to
balloon operators. At a minimum, knowing where the payload will land significantly expedites its recovery. Often,
however, balloon operators are required to avoid flying through or landing in certain areas for safety or regulatory
reasons [1]. Since the balloon cannot be diverted once launched, the operator must be confident prior to launch that the
balloon will remain clear of undesirable locations. In order to make these determinations, operators rely on numerical
trajectory models. While a significant body of literature exists on trajectory models for large, long-duration balloons,
there has been limited research into models for short-duration latex balloons. This paper details the development of such
a model, with particular emphasis on determining the effect of the various uncertainties on the landing location.

II. Physical Processes in Balloon Flight
In order to accurately predict a balloon’s trajectory, it is necessary to understand the forces acting on it. Figure 1

presents a free-body diagram of a balloon in flight. There are three forces acting on the balloon: weight, buoyancy, and
drag. Each is critical to understanding the balloon’s trajectory.

The weight force on the balloon, Fw , is given by Eqn. 1.

®Fw = −msysg ẑ (1)

The buoyant force on the balloon, Fb, which produces the balloon’s lift, is given by Eqn. 2. It follows from
Archimedes’ Principle, which states that an object immersed in a fluid experiences an upward force equal to the weight
of the displaced fluid. It is important to note that both the local density of the air and the volume of the balloon are
dependent on the local atmospheric conditions, which in turn depend on the position and time.

®Fb = ρ∞Vg ẑ (2)

The final force on the balloon, drag, is the most complex. The drag force Fd is given by Eq. 3 [1, 2]. The drag force
acts in all three directions and is responsible for both limiting the balloon’s ascent velocity and coupling the balloon’s
horizontal motion with that of the wind. This latter effect comes from the fact that drag is most directly dependent on the
balloon’s velocity relative to the surrounding air, ®vrel , rather than its inertial velocity. Additionally, as will be described
in the following sections, the balloon’s cross-sectional area and coefficient of drag are functions of the balloon’s state.

®Fd = −
1
2
ρ∞Atop | ®vrel | ®vrel (3)

Since both the drag and buoyant forces depend on the size and shape of the balloon canopy, an accurate understanding
of how the canopy behaves during flight is critical to effective trajectory prediction. Because the canopy is a flexible
material that contains a gas, its behavior is closely related to that of the lifting gas, and both must be considered in order
to get an accurate model.

A. Canopy Shape Model
A preliminary question in such an analysis is how to model the shape of the balloon. Large zero- and super-pressure

balloons are typically made of multiple sheets of non-elastic material that are attached together, and they tend to assume
a teardrop or pumpkin shape [3]. However, due to their elastic nature, smaller latex balloons tend to assume a shape
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Fig. 1 Forces acting on a balloon in flight.

much closer to that of a sphere, albeit one distorted by the weight of the payloads suspended at the bottom. Despite this
distortion, a spherical model is appropriate for latex balloons. Consider the balloon shown in Fig. 2, which is restrained
prior to launch. As it is both restrained, which increases the tension in the payload line, and not fully expanded, causing
less tension in the canopy than would be present at altitude, it presents a reasonable upper bound on non-sphericity.
Image analysis shows that the spherical portion of the canopy (shaded red in Fig. 2) represents 86% of the cross-sectional
area and 95% of the canopy volume, corresponding to less than a 2% error in radius. Since the canopy will be even
more spherical at burst altitude, where canopy size and shape are even more critical than at launch, modeling the canopy
as a sphere is a reasonable approximation.

Fig. 2 Latex balloon non-sphericity.

B. Canopy Volume Model
Determining the size of the canopy at a given point during the flight is a considerably harder problem, as it is

continuously changing. It is most directly accomplished by applying the Ideal Gas law, PV = mRT , in combination
with an initial measurement of the mass of the lifting gas. However, this method requires knowledge of the temperature
and pressure inside the balloon across the entire flight envelope. Figure 3, based on data from Breeden [4], shows the
temperature and pressure inside and outside a latex balloon canopy during flight. Although the elastic latex canopy does
slightly compress the lifting gas, internal and external pressure remain within 1% of each other on average over the
course of the flight, so treating the interior and exterior pressures as equal is reasonable. This is consistent with results
from Conner [5]. The same cannot be said for temperature, however. The data show a significant (>30 K at some points)
difference in interior and exterior temperature. This is perhaps to be expected, as the balloon is subject to appreciable
radiative heating both from the Sun and from the Earth’s surface [3]. It is thus necessary to construct a thermal model of
the lifting gas.

C. Canopy and Lifting Gas Thermal Model
The thermal model presented here is modified from Farley [3], who derived a general thermal model for very large

scientific balloons. Figure 4 displays the major heat transfer operations in effect on a balloon in flight. The upward
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(a) Pressure vs. Time (b) Temperature vs. Time

Fig. 3 Comparison of temperature and pressure inside and outside the balloon canopy[4].

motion of the balloon forces convective transfer between the atmosphere and the canopy, and the canopy is radiatively
heated by the Earth’s surface, by direct sunlight, and by the sunlight reflected from the Earth (albedo). Heat transfer
between the canopy and the lifting gas is by convection only, as the absorptivity of helium is negligibly small [1].
Because the canopy is extremely thin, temperature gradients across the canopy can be neglected [2].

Fig. 4 Heat transfer processes acting on a balloon

Farley treats the canopy as one thermal mass of uniform temperature [3]. An alternative, presented by Lee [1], is to
treat balloon as a tessellation of triangles and compute the various heat fluxes on each triangle individually. While this
may be advantageous for very large balloons with complicated shapes, it is extremely expensive computationally, so
implementing it on small, spherical latex balloons is difficult to justify. Adopting the model of a uniform canopy, the
canopy temperature differential equation is given by Eqn. 4, which is nothing more than the sum of the heat fluxes on
the canopy divided by its mass and specific heat capacity.

dTg

dt
=
ÛQa + ÛQs + ÛQe + ÛQca − ÛQcg − ÛQIR

ccmc
(4)

The gas temperature differential equation (Eqn. 5) is somewhat more complicated, accounting for adiabatic expansion
of the lifting gas as well as convective transfer to the canopy [1, 3].

dTg

dt
=
ÛQcg

cvmg
+ (γ − 1)

Tg

ρg

dρg
dt

(5)

In the case that mass loss through the canopy is negligible, Eqn. 5 reduces to Eqn. 6. In order for a balloon to be an
effective flight system, the rate of lifting gas diffusion must be relatively small, but little data exists to quantify this effect
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[6]. However, other parts of the model must assume no lifting gas diffusion in order to remain computationally tractable,
so it is assumed here as well.

dTg

dt
=
ÛQcg

cvmg
+ (1 − γ)

Tg

V
dV
dt

(6)

1. Radiative Transfer
Determining the magnitudes of each of the four radiative loads on the balloons requires reliance on numerous

interrelated atmospheric and planetary science models. This section will present some of the more fundamental
equations, but for a more in-depth treatment, the reader is referred to Farley and Lee [1, 3].

The solar flux at the top of Earth’s atmosphere Is is approximately 1.36 kW/m2, but it varies seasonally with the
Earth’s distance from the Sun. The atmosphere absorbs some fraction of the incoming solar flux, so Is must be multiplied
by the atmospheric transmissivity, τatm, which is a function of altitude. The solar heating on the balloon’s canopy is
thus given by Eqn. 7 [3].

ÛQs = απr2τatmIs
[
1 + τ

(
1 + re f f

) ]
(7)

The balloon is subject to two radiative loads from the ground: the infrared radiation due to the ground temperature
(Eqn. 9), and the reflection of the sun off the ground (albedo; Eqn. 10). In each case, the surface area with a direct view
of the Earth is given by Eqn. 8 [3]. As with the direct sunlight, the altitude-dependent transmissivity of the atmosphere
must be taken into account; this transmissivity is not the same for direct sunlight and infrared radiation.

Adown = 2πr2
1 −

√
1 −

(
Re

Re + z

)2 (8)

ÛQgr = αIRAdownIgrτatm,IR

[
1 + τIR

(
1 + re f f

) ]
(9)

ÛQa = aαAdownIs sin(el)τatm
[
1 + τ

(
1 + re f f

) ]
(10)

The albedo factor a, which denotes the fraction of incident sunlight reflected by the Earth, varies significantly
based on the terrain the balloon is flying over. Although Farley uses average albedo data [3], albedo accuracy can be
significantly improved by relying on albedo data from the same numerical weather prediction sources that are used to
provide data about the atmospheric state. While clouds can change the albedo reported from numerical models, federal
regulations restrict the operation of balloons in cloudy environments [7], so this effect is of limited operational relevance.

The balloon’s canopy also functions as an infrared emitter, radiating along both its inner and outer surfaces. Since
the lifting gas does not absorb the radiation, some of it is re-absorbed by the canopy, either directly or after some number
of internal reflections, while the rest is transmitted through to the atmosphere. The net effect of this radiative heat loss is
given by Eqn. 11.

ÛQIR = 4πr2σαIRT4
f

[
2 − αIR

(
1 + re f f

) ]
(11)

2. Convective Transfer
In addition to the radiative loads, the canopy is subject to convective transfer with both the atmosphere (Eqn. 12)

and the lifting gas (Eqn. 13). Determining the convection coefficient hc in each case is beyond the scope of this paper;
the reader is referred to references [3] and [8] for the relevant formulas.

ÛQca = 4πr2hca(T∞ − Tf ) (12)

ÛQcg = 4πr2hcg(Tf − Tg) (13)
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D. Drag Coefficient Model
Drag on the balloon is given by Eqn. 3, which is dependent on the balloon’s coefficient of drag Cd. For a sphere,

Cd is strongly dependent on the Reynolds Number Re, given by Eqn. 14, where the ∞ subscript denote free-stream
atmospheric conditions. It is important to note that the velocity is given relative to the atmosphere, so a balloon’s
horizontal movement with the wind does not affect the Reynolds number. Typical Reynolds numbers for latex balloon
flights range from 50,000 to the single digit millions.

Re =
2ρ∞v∞r
µ∞

(14)

Figure 5 depicts the coefficient of drag for a sphere as a function of Reynolds number, using a relationships identified
by Morrison and Conner [5, 9]. Morrison’s model concerns spheres generally, while Conner’s was developed specifically
for latex balloons. As can be seen from Fig. 5, balloon flight Reynolds numbers span the region where the coefficient of
drag decreases from 0.4-0.5 to 0.1 across a relatively narrow span of Reynolds numbers, referred to as the drag crisis.
Because of the extreme variation in coefficient of drag in this region, the accurate modeling of the balloon’s ascent rate
requires that the Cd be treated as a function of Re. Conner’s model was selected, as it is based on experimental data
from latex balloon flights.
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Fig. 5 Coefficient of Drag versus Reynolds Number for a Sphere.

E. Descent Under Parachute
Unlike in large scientific balloon flights, the descent of the payloads after canopy burst typically constitutes a

significant portion of the flight time for latex balloon flights, and must be modeled in order to get an accurate landing site
prediction. The only forces acting on the payloads under parachute are their weight and the drag force of the parachute.
Video from balloon flights indicate that parachutes inflate to their full volume within a few seconds of the balloon
bursting and remains so for the entire descent. Thus rather than trying to model the parachute area and coefficient of
drag separately, they can be combined in a ballistic coefficient BC given by Eqn. 15. BC can be calculated based on the
observed descent velocity of the system, either on a previous flight or during a drop test from a structure using Eqn. 16.

BC =
CdAparachute

msys
(15)

BC =
2g
ρ∞v2

∞
(16)

III. Equations of Motion
Now that a physical model of the balloon has been developed, it is possible to identify the balloon’s equations of

motion by applying Newton’s Second Law, Σ ®F = m®a. The results are given by Eqns. 17a-17c. It should be noted that
the mass mv appearing in these equations is not identically the system mass, but rather the system mass plus some
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’added mass’ of air that is dragged along with the balloon [10]; this combination is referred to as the ’virtual mass’.
However, as will be shown in the following sections, these equations can be reduced to a form that eliminates mv .

mv Üx = ®Fd · x̂ (17a)

mv Üy = ®Fd · ŷ (17b)

mv Üz = ( ®Fd + ®Fg + ®Fb) · ẑ (17c)

A. Horizontal Equations of Motion
Equations 17a and 17b show that the balloon’s horizontal velocity is dependent only on the drag force and the initial

conditions. Because the drag force acts opposite the balloon’s relative velocity with respect to the wind, it will act to
drive the balloon’s horizontal velocity to that of the wind. As an illustration of the time scales involved, Fig. 6 presents
the results of simulating the release of a relatively large (5.5 kg payload) latex balloon in moderate conditions (wind at
4 m/s from the SSW). Both horizontal velocity components converge to the wind velocity within approximately 30
seconds; larger wind magnitudes would converge even faster. Since this time scale is relatively short compared to the
90+ minute flight lengths typical of latex balloons, it is a reasonable simplifying approximation to treat the balloon’s
horizontal velocity as identically equal to that of the surrounding air. As Sóbester notes, this assumption might be
violated if the wind velocity changes drastically over a small altitude span, such as when entering or exiting the jet
stream [6], but, unless released into severe weather, balloons are unlikely to spend more than a few minutes in such
areas over the course of their flight.

Fig. 6 Velocity Components vs. Time for a Balloon Released from Rest.

B. Vertical Equation of Motion
Equation 18 expands the vertical equation of motion (Eqn. 17c) under the assumption that there is no vertical wind

and horizontal transients have settled.

mÜz = −1
2
ρ∞AtopCD Ûz.2 − msysg + V ρ∞ (18)

Even though many of the variables on the right hand side of Eqn. 18 have a dependency on the state of the balloon,
and thus time, Ûz is the most time-dependent by at least an order of magnitude. Thus, locally, Eqn. 18 may be rewritten
as an equation of the form Üz = −AÛz2 + B, with A, B constants. This form reveals that the balloon’s ascent velocity Ûz at
any time will be locally asymptotic to some value. Since, as Fig. 6 shows, the balloon’s velocity will rapidly return to
this value when disturbed, it is appropriate to model the ascent velocity as a quasi-static process. Under this assumption,
it is not necessary to integrate Üz, but rather Ûz can be directly determined at each step from Eqn. 19, which was obtained
by setting the left hand side of Eqn. 18 to 0 and solving for Ûz. This approach is consistent with with acceleration profiles
calculated by Conner from balloon flight data, which show that latex balloons rarely experience maximum vertical
acceleration magnitudes of more than 0.008 m/s2, with typical values being less than 0.002 m/s2 [5].
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Ûz =

√
2
(
ρ∞Vg − msysg

)
ρ∞CD A

(19)

IV. Numerical Implementation
The simplified kinematics presented in Section III were implemented using a fourth-order Runge-Kutta numerical

integrator derived from Cambridge University’s Tawhiri prediction engine [11], with the kinematic equations param-
eterized in the latitude-longitude-altitude frame. At each time step during ascent, the integrator sets the zonal and
meridional velocities equal to the ambient wind velocity, calculates the ascent rate using Eqn. 19, and calculates dTg/dt
and dTf /dt using the equations presented in Subsection II.C. The integrator compares the balloon’s radius at the end
of each time step to a specified burst radius, and uses this as the termination condition of the ascent. On descent, the
descent velocity is calculated by inverting equation 16.

At each time step, it is necessary to obtain the ambient wind, temperature, and pressure, as well as the surface
albedo and ground temperature of the sub-balloon point on the ground. These were extracted from the NOAA Global
Forecasting System (GFS) model, which is a meteorological model with worldwide coverage at 0.5° spatial resolution
and 3 hour temporal resolution. Variables are interpolated linearly in latitude, longitude, and time between grid points.
Wind and temperature are also interpolated linearly with respect to altitude, while pressure is interpolated exponentially.

V. Characterization of Model Uncertainty
Any model of a physical process necessarily contains some uncertainty, as the model cannot capture all the details

of the process. In balloon trajectory prediction, it is important to understand the degree to which the trajectory may
deviate from the nominal prediction, as the key decision parameter for operators is the likelihood that the balloon will
land in or pass through some undesirable location. This model attempts to quantify the effects of uncertainty in model
through the use of Monte Carlo ensembles. By randomly deviating the input conditions across a large number of model
runs, it is possible to develop a solution that shows where the balloon is most likely to land and the sensitivities of the
trajectory to various input parameters. The model considers uncertainties that affect the balloon’s ascent rate, horizontal
drift, burst, and descent rate.

A. Ascent Rate Uncertainty
Equation 19 shows that the balloon’s ascent rate is dependent on the ambient environmental conditions, the amount

of lifting gas in the balloon, the system mass, and the coefficient of drag. Since small changes in temperature and
pressure do not have a large effect on the balloon’s ascent rate, uncertainty in these quantities is neglected in favor of
modeling uncertainty in the system parameters.

The mass of the lifting gas can be measured indirectly at launch by measuring the lift at the neck of the balloon and
subtracting the mass of the balloon’s canopy. Experience has shown that this measurement can be rather imprecise
due to the balloon being moved about by the wind. Since free lift is a fairly direct proxy for lifting gas mass, a normal
distribution for lifting gas mass error is appropriate, as it reflects the underlying measurement uncertainty. Since the
system mass that is not the lifting gas can be determined under laboratory conditions, its uncertainty can be considered
negligible.

The drag coefficient is modeled as an explicitly function of Reynolds number, so it reflects the environmental
uncertainties discussed above. However, since Conner’s Cd model reflects an analytical curve fit, there is necessarily
some additional uncertainty in the resulting value [5]. Additionally, the true Cd of the overall vehicle will reflect some
drag on the payloads suspended below the balloon, which Conner’s model does not account for. Since the Cd can vary
by a factor of five or more over the course of the flight, and there is little reason to believe that significant perturbations
exist that would be independent of Reynolds number, a multiplicative model of uncertainty seems more appropriate than
an additive one. The model thus applies a unity-mean normally-distributed scale factor to the Cd from Conner’s model,
with a default standard deviation of 0.075.

B. Horizontal Drift
Since the balloon’s horizontal motion is with the surrounding air, uncertainty in the wind model propagates directly

to the balloon’s trajectory. Because wind is an environmental uncertainty, wind perturbations are heavily correlated
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spatially and temporally; if the wind deviates by a certain amount from the predicted value in one location, nearby
locations will likely have a similar deviation. This problem is especially acute for the altitude axis, since the separation
between points is much less than on the latitude and longitude axes [1]. Additionally, although the wind is parameterized
in terms of zonal and meridional components, such a parameterization is somewhat arbitrary. As a result, the model
should treat the uncertainties in zonal and meridional wind components as correlated.

In order to treat these correlations appropriately, the model generates two normally distributed values for each point
in the latitude-longitude grid. The first value is a zero-mean angular deviation that is applied to the wind vector, with a
default standard deviation of 5 deg. The second is a unity-mean multiplicative deviation that is applied to the wind
velocity magnitude; this uncertainty has a default standard deviation of 0.05. Due to the strong correlation between wind
at different altitude layers, the same deviations are applied for all points at the same latitude and longitude, regardless of
altitude.

C. Burst Diameter Uncertainty
The burst diameter of the balloon determines the burst altitude, which, depending on the wind, can have a significant

impact on the overall trajectory. Balloon manufacturers typically specify a nominal burst diameter for their balloons, but
this is subject to considerable variation. The burst diameter is a measure of the balloon’s lifetime, so aWeibull distribution
is appropriate. The default parameter of k = 14.4 is taken from Sóbester’s analysis of small latex meteorological
balloons [6].

D. Descent Rate Uncertainty
In addition to the environmental uncertainties discussed in Subsection V.A, the descent rate is affected by uncertainty

in the ballistic coefficient BC. This uncertainty is propagated through the Monte Carlo model as a normally-distributed
unity-mean factor multiplying BC with a standard deviation of 0.05.

VI. Sample Model Output
Model output is plotted using the Google Maps API using code adapted from Tawhiri [11]. For Monte Carlo

ensemble forecasts, the results can be plotted as a heat map, where warmer colors indicate a greater landing probability.
Sample model output representing fairly typical balloon flight parameters is presented in Figs. 7 and 8, where the
red bubble indicates the launch location. In Fig. 7, the prevailing wind is out of the southwest, so the landing site
distribution is roughly ellipsoidal, with the major axis along the wind vector. The dominant operational uncertainty in
the landing site is thus downrange distance. This distribution is quite typical of flights where the winds do not vary
significantly in direction with altitude. Figure 8 depicts a situation where the wind changes from west to south with
altitude. In this case, the landing site distribution is less one-dimensional, as the landing site is much more sensitive to
ascent rate.

Fig. 7 Sample model output
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Fig. 8 Sample model output

VII. Conclusion
Effective prediction of scientific balloon trajectories is a topic of considerable importance to operators as it increases

safety, simplifies planning, and helps ensure regulatory compliance. Because of the inherent uncertainty in balloon
trajectory predictions, Monte Carlo models help operators understand the uncertainty in a trajectory prediction and
make decisions accordingly.

In this paper, a general model of high-altitude scientific balloon trajectories has been developed. The balloon
is treated as moving horizontally with the surrounding wind, while ascent is a function of canopy size and lifting
gas density. Various convective and radiative transfer processes on the canopy are considered in order to accurately
model the evolution of lifting gas temperature. The model supports Monte Carlo variation of fundamental simulation
parameters in order to allow users to examine the effects of environmental and operational uncertainties. Sample model
output is provided for different weather conditions experienced in operational environments. Verification of the model
with flight data from the Balloon Payload Program at the University of Maryland is ongoing.
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