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Introduction

In this thesis, we will study the control system of an astronomical balloon-borne telescope
called BETTII: Balloon Experimental Twin Telescope for Infrared Interferometry. The BET-
TII project is a collaboration between NASA, the University of Maryland, Johns Hopkins
University, Cardiff University, and University College London, with assistance from the Far-
Infrared Telescope Experiment team in Japan. Developed at NASA’s Goddard Spaceflight
Center (GSFC), this instrument is implementing the "Double-Fourier" interferometry, a new
observation technique that could lead to future space telescopes with high angular resolution
in the far-infrared spectrum.

At infrared wavelength, observations from the Earth’s surface are limited by the low at-
mospheric transmission. Observations at this region of the spectrum have a high scientific
value, but the resolution of space-based telescopes is limited by the cost and complexity of
building and flying progressively larger aperture telescopes. High altitude platforms are a
good compromise between ground and space observatories. They can feature larger optics
than space-based observatories at a reduced cost, but they are also less sensitive, due to the
surrounding thermal emission from the atmosphere and their components.

BETTII is a high-altitude observatory in a balloon platform that, instead of using a single-
aperture like a conventional telescope, uses interferometry between 30 and 110 µm. It has a
cryogenic payload and it will attempt to study clustered star formation in nearby star clusters.

This document is the result of a 5 months experience at NASA-GSFC and CSBF between
April and September of 2017 and is centered around the data collected from BETTII’s first
flight. Due to the nature of a flight campaign, several different tasks have been conducted
during this stay including hardware work, electrical debugging and software developing. The
structure will be as follows: first, there is a brief description of BETTII and its different
subsystems. Secondly, the events during the launch campaign are described, giving some ex-
amples of the problems that arose during and before the flight. Then, some useful information
is processed and shown from the flight data. Finally, some propositions of future work and
conclusions are presented.
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Chapter 1

The Balloon Experimental Twin
Telescope for Infrared Interferometry

The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) will provide
access to the cosmos, similar to that of an orbiting observatory. Flying on a high altitude
balloon at 40 km (130 kft), BETTII will explore a region of the electromagnetic spectrum,
the far-infrared (FIR), using a technique called interferometry.

BETTII is an 8-meter interferometer which operates at wavelengths of 30-110 µm on a
high-altitude balloon. This long baseline will allow unprecedented angular resolution (∼ 0.5”)
in this band, and the high atmospheric transmission at balloon altitudes will allow the unique
double-Fourier instrument on BETTII to obtain a high spectral resolution, R ≡ λ

∆λ ∼ 100.
The combination of these capabilities will provide spatially resolved spectroscopy on astro-
physically important sources, exploring the physical processes that lurk below the resolution
limits of current FIR facilities.

This project is a first step toward the coming era of space-based infrared interferometry,
enabling a technology that will transform astronomy and astrophysics. Data acquired with
BETTII will be complimentary to observations with space observatories such as Herschel and
the James Webb Space Telescope, exploring the FIR wavelength range with unprecedented
high angular resolution. These data will be a powerful tool for understanding star formation
in clusters, and with future flights, for understanding active galactic nuclei and the late stages
of stellar evolution.

1.1 Design

The whole payload consists of a long 8 meters trust, built of 2 meters carbon fiber tubes,
sitting on a gondola made of aluminum bars. The goal is to receive and combine two beams
of light reflected from two spatially separated mirrors. These siderostat mirrors, controlled in
elevation by two motors, are located on the two extremes of the trust. The reflected beams
are, lately, compressed in a 20:1 ratio by two specially built telescopes. After the telescope, the
light passes through a set of mirrors, whose goals are to adjust the phase difference between
the beams and center the targets on the detectors. The science sensors are located inside the
cryogenic instrument (also referred in this document as Dewar), using Helium and Nitrogen in
order to cool down the detectors at less than 4 Kelvin. Thus, it achieves good enough signal

3



4 Chapter 1. BETTII

conditions in the far-infrared spectrum.

Figure 1.1: CAD design of BETTII

Figure 1.2: Dewar, the cryogenic instrument.

1.1.1 Interferometry

Because light behaves like a wave, the intensity of the two light beams combined depends
on the brightness of the source and the relative phase of each beam. Changes in this relative
phase create a modulation of that intensity. This modulation is called an interferogram, which
describes the measured intensity variation as a function of the phase difference between the
two beams. In this work, however, instead of expressing the phase difference in radians we will
express it in terms of physical distance (optical path difference, OPD) to relate more easily to
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opto-mechanical considerations and avoid the dependence on the wavelength.

Figure 1.3: Interferogram of a sum of cosine waves at different frequencies.

In this project, there are two delay lines, a warm delay line and a cold delay line. They are
a set of moving mirrors that introduce a path difference between the two beams of light. The
warm delay line is outside the cryogenic chamber; its main goal is to center the interferogram
and correct any optical delays caused, for example, by a residual misalignment of the telescope
axis with respect to the source. The cold delay line has a ten times higher frequency control
loop and is located inside the Dewar. It will generate a scan of optical path differences in
order to obtain the desired interferogram. By scanning the OPD, we obtain a modulation of
each pixel on the detector. We get the spectrum of the source performing a Fourier transform
of the interferogram but we can also obtain the spatial information of the sources looking at
their amplitudes and phases. That is why it is called a double Fourier interferometry, because
we obtain information on both the spectral and the spatial characteristic of the source.

The two siderostat mirrors have a diameter of 50 cm and are separated by 8m. Theoret-
ically, the resulting angular resolution is about 0.5" for the 30-55 µm band and ∼1" for the
55-110 µm band. This resolution is much better than the existing telescopes that operate
also in the far-infrared, which are limited by the mirror size. For reference, the James Webb
Space Telescope will achieve the same resolution but for shorter wavelengths around the 25
µm band.

1.2 Sensors

1.2.1 Star cameras

BETTII uses two star cameras located on both arms and pointing to 45 degrees of elevation.
They measure the payload orientation. The star camera software, provided by the Cardiff
University, solves from a given picture the inertial orientation and also gives the uncertainties
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of this three measurements. The lenses used provide low chromatic aberration, a wide field
of view (∼ 10◦) and a collecting area of 90 mm2. However, they do not have an auto-focus
feature, that is why a specially designed and remotely controlled auto-focus mechanism has
been implemented. This auto-focus system will allow us to correct any unfocusing due to,
for example, a contraction of the lens caused by the low temperatures. Later on, during
the flight campaign, an alternative camera solution finder software called Astrometry.net was
implemented in the system. Astrometry.net is an open-source and free to use software. From
the ground, we can chose which software to use, as it was observed that they behave differently
depending on the conditions. Other parameters such as the exposure time or the field of view
are also commandable from the ground.

Figure 1.4: Left star camera of BETTII.

Figure 1.5: Example of an image taken by a star camera, with the solution found by the
Astrometry.net software printed on.
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1.2.2 Gyroscopes

The gyroscopes used to measure the angular velocity of BETTII are three SRS-2000 Sagnac
effect gyroscopes from Optolink. These devices offer a high precision and have very low
angular random walk and biases. The gyrsocopes’ bandwidth is 50 Hz but they can be
read at a rate of 2000 Hz. Each gyroscope has a thermometer and a Peltier plaque that
controls the temperature, since their performance depends on the temperature stability. The
three gyroscopes were mounted in an orthogonal configuration, shown in figure 1.6. The

Figure 1.6: The three SRS-2000 gyroscopes mounted in an orthogonal assembly.

angular random walk (ARW) indicates the effect of integrating the noisy measure of the
velocity. The specification from the manufacturer is ARW = 5 × 10−4deg/

√
h. This means

that if we integrate the gyroscopes for 1 hour, the 1σ uncertainty on our position would be
5 × 10−4 deg ∼ 1.8′′. This effect varies as the square root of the integration time, for an
integration of 1 second it would be 0.03′′, only 60 times less. There is also a bias drift, which
the manufacturer defines as 0.005 deg/h at a fixed temperature.

1.3 Control system

The goal of the control system is to use the information measured by the star camera and
the gyroscopes sensors to maintain the telescope pointing at a desired attitude. The control
loop consists of an attitude estimator that will be compared to the desired coordinates of a
target star to compute the desired azimuth and elevation. Then, these azimuth and elevation
are fed to two PID controllers. This system will be key to track any target star and will use
three different types of actuators, one to control the elevation and two to control the azimuth.
The control system runs in a 100Hz loop implemented in LabView for the on-board computer
called Boop, described briefly in the section 1.4.
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1.3.1 Elevation actuators

The elevation of BETTII’s telescope is determined entirely by the angle of the two siderostat
mirrors. This angle is changed by two industrial DC brushless rotators manufactured by
Griffin Motion and they are controlled with a commercial controller that provides a high
angular precision.

1.3.2 Azimuth actuators

In order to control the payload’s azimuth, two actuators are used: a CCMG and a momentum
dump mechanism. The Compensated Controlled Moment Gyroscopes (CCMG) is a system
with two counter-rotating reaction wheels mounted on a gimbal. The wheels are controlled by
a commercial controller from Galil Motion that operates a brushless DC motor together with
a 13 bit encoder that measures the wheels’ rotation. In addition, there is a stepper motor that
moves the shaft’s angle, also controlled by a Galil Motion controller. This latter device that
controls the stepper motor operates an additional motor, the one from the momentum dump
mechanism that we will see later.

Figure 1.7: Compensated controlled moment gyroscopes.

During power-up, the wheels start accelerating until they reach a constant speed of 3000
rpm in about 10 minutes. This spinning velocity will be maintained during all the flight
duration. At 3000 rpm, the CCMG wheels have a stored momentum of MCCMG = 20.8Nms.
Depending on the angle θ between the horizontal axis and the rotation axis of the wheels, the
momentum along the z axis will be a projection of the total stored momentum:

MCCMG,z = 20.8 sinθ (1.1)

When the rotation axes of the wheels are aligned with z (θ = 90◦), we have the maximum
momentum. The torque τCCMG is the variation of the momentum with time:

τCCMG =
d

dt
MCCMG,z = 20.8 θ̇ cos θ [Nm] (1.2)
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Figure 1.8: Galil Motion control boards.

The variation on the rotation axis angle is translated to a torque. We will always work
with small angles, because at angles around 90 degrees the effect on the torque is practically
nonexistent. This is the main function of the momentum dump, that uses the attachment
to the balloon like a momentum storage. The principle behind the mechanism is to rotate
a motor connected, via a double-bearing assembly, to the pin that supports all the payload
structure.

Figure 1.9: Momentum Dump mechanism.

When the payload is hanging, the friction transfers the rotation of the motor to the balloon
train. Then, when the train is sufficiently twisted, a momentum unloading starts in the
opposite direction. All this process occurs slowly because of the low friction of the bearings.
The control loop of this part has been tuned to maximize the speed. To achieve a given
momentum on the z axis, the momentum generated by the CCMG is calculated and added to
the payload inertia:

Mz = MCCMG,z + Jz ωz (1.3)
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where the inertia Jz is estimated with a procedure explained in the section 2.2.1 where the
CCMG gimbal is moved at a constant rate.

1.3.3 Attitude estimation

The attitude of BETTII is estimated using the information from the star cameras and the
gyroscopes. In case that the star cameras fail and we can not get an absolute measurement of
the position, the system is designed to use alternatively the magnetometer and the GPS. Once
we get the target star at the NIR detector, we use the tip/tilt mirrors position to estimate
more accurately the attitude of the telescope. The information from the sensors is fused on
an extended Kalman filter that will estimate the attitude and the gyroscopes’ biases.

1.3.3.1 Reference frames

Figure 1.10: Coordinate systems relevant to the pointing control system. The subscripts sc, g,
tel, L, R and LS indicate the star camera, gyroscope, telescope, left, right and left siderostat
reference frames, respectively. The gyroscope reference frame is nominally aligned with the
gondola reference frame, which has no subscript. Credit: Maxime Rizzo [Riz16]

It is important to set the key coordinate systems of BETTII before going into the details
of the attitude estimation. We consider that the gondola reference frame G is the one defined
by the gyroscopes (axes with ’g’ subscript). The star cameras are nominally aligned with the
gyroscope reference frame but with a rotation about yg of −45 degrees. With the aid of laser
trackers, a more precise rotation between the two reference frames had been found. The final
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goal of the control system is to point the detectors to a target star. The detectors will see the
light reflected from the siderostats. The telescope reference frame T is defined as the result
from the rotation of the gondola reference frame with the angle of the two siderostats. In this
manner, the xtel axis will represent the line of sight of our detectors.

Stars can be located using the equatorial coordinate system, in terms of right ascension
(RA) and declination (DEC) coordinates. This celestial coordinate system is useful because
the stars are practically fixed in this frame, and they do not change their coordinates during the
observation time. That does not occur if we use Azimuth and Elevation coordinates referenced
to the Local Horizon plane. The star cameras will also provide solutions in this equatorial
coordinate system and that is the reason why we will use it as our inertial reference frame
I to describe the attitude of the gondola. It is important to determine the inertial attitude
in order to calculate the desired local azimuth φAz and elevation φEl of the gondola. Ideally,
starting with only the target’s location in RA and DEC, the system will be able to control
the entire gondola to within ±15” of the target. Once we achieve this goal, an additional fine
pointing control using small mirrors will be done to center each beam to ±1.5” at the science
detector.

1.3.3.2 Quaternions

To represent the attitudes and rotations of the different reference frames we use quater-
nions. Briefly, quaternions extend the complex numbers and are very useful to describe
three-dimensional rotations. They have a real part qr and three imaginary parts qi,qj ,qk.
If the values of the quaternion fulfill

q =


qi
qj
qk
qr

 =


kx sin θ/2

ky sin θ/2

kz sin θ/2

cos θ/2

 (1.4)

the quaternion q is called quaternion of rotation. A quaternion of rotation has unit norm, θ
describes the angle of rotation around the axis defined by the vector k = [kx, ky, kz]

T .

The notation G
Iq represents a quaternion describing the rotation between the inertial refer-

ence frame I and the gondola reference frame G or, equivalently, the coordinates of the inertial
attitude of the gondola in the equatorial coordinate system. In this manner, the quaternion
S
Gq should describe the rotation of −45 degrees applied to the gondola reference frame to
become the right star camera reference frame S. The rotations are applied using the quater-
nion multiplication. In this work we do not use the Hamilton multiplication but the "natural
order" multiplication, in accordance with the JPL proposed Standard Conventions [Bre99].

As an example, if we want to calculate where the telescope is pointing to – described by
the quaternion T

Iq – using only the measured attitude from the star camera software, the
typical chain of rotations is as follows:

T
Iq

meas = T
Gq⊗

G
Iq

meas = T
Gq⊗ G

Sq⊗
S
Iq

meas (1.5)
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The rotation T
Gq is a pure rotation about the yg axis of the elevation angle applied to the

siderostats. The rotations T
Gq and G

Sq are considered to be very precise, obtained by optical
alignments and accurate angle measurements. In the tables 1.1 and 1.2 we can see the evolution
of these rotations for a measurement of the star camera of RA,DEC,ROLL = 100, 20, 30

degrees. The approach used for the estimation of the telescope attitude is almost the same
as shown in the previous example but obtaining a better estimation of the G

Iq quaternion,
instead of using directly the solutions provided by the star cameras.

T
Iq

T
Gq

G
Sq

S
Iq

qi 0.384 0.000 −0.006 0.292

qj 0.006 −0.500 0.382 0.087

qk 0.712 0.000 −0.006 0.758

qr 0.587 0.866 0.924 0.577

Table 1.1: Quaternions involved in the telescope attitude calculation. Siderostats’ elevation
angle of 60 degrees

T
Iq

T
Gq

G
Sq

S
Iq

RA 90.984 0.000 −1.216 100.000

DEC 32.696 60.000 −44.960 20.000

ROLL 33.142 0.000 −1.189 30.000

Table 1.2: Quaternions involved in the telescope attitude. Siderostats’ elevation angle of 60
degrees. Using the equatorial representation, in degrees.

1.3.3.3 State equations

The goal is to estimate an attitude quaternion G
Iq describing the inertial attitude of the

gondola. In addition, we want to estimate the biases of the three gyroscopes b(t) to have
better velocities measurements and improve our predictions. A Kalman filter will be used to
obtain the estimate of these values. The seven-dimensional state vector of our system is:

x(t) =

[G
Iq(t)

b(t)

]
(1.6)

The evolution of the state vector is defined by:

G
I q̇(t) =

1

2
Ω(ω(t))GIq(t) (1.7)

ḃ(t) = nb(t) (1.8)

where

Ω(ω) =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 =

[
bω̂×c ω

−ωT 0

]
(1.9)
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with ω = ωmeas − b − ng. Where ng is the noise measured by the three gyroscopes and
nb is the bias instability. These two noises are considered white and Gaussian with variances
σ2
g and σ2

b respectively. However, the noise values are unknown so we use an estimate of the
state vector x̂ =

[G
I q̂(t), b̂(t)

]T that follows the same dynamic equations but with the noises
equal to zero. When dealing with propagation of quaternions, the Kalman filter faces some
numerical complications. To avoid this problem, a multiplicative Kalman filter is implemented
by using small angle approximation of the quaternions [TR05] [Riz16]. This modified Kalman
filter will have a new six-dimensional state vector called error vector x̃ =

[
δθ,∆b

]T , where
∆b = b− b̂ and δθ are the three angular errors between the true and estimated attitude
quaternions taken directly from the difference quaternion G

Iδq = G
Iq ⊗

G
I q̂
−1 ≈

[
1
2δθ, 1

]T .
With these new variables we can write our gyroscope model as:

ωmeas = ω+ b+ ng (1.10)

ω̂ = ωmeas − b̂ (1.11)

ωtrue = ω̂ − ng −∆b (1.12)

The resulting continuous state equations from this new error state vector are [TR05]:

˙δθ = −ω̂ × δθ −∆b− ng (1.13)

∆̇b = ḃ− ˙̂b = nb (1.14)

Combining these results we may write the error state equation as

˙̃x =

[
˙δθ

∆̇b

]
= F

[
δθ

∆b

]
+ G

[
ng

nb

]
(1.15)

with

F =

[
−bω̂×c −I3×3

03×3 03×3

]
(1.16)

and

G =

[
−I3×3 03×3

03×3 I3×3

]
(1.17)

where bω̂×c is the skew-symmetric matrix made out of the elements of ω̂, bω̂×cδθ = ω̂ × δθ.
To obtain a discrete transition matrix Φk of the process, we can integrate the state equation
between the times tk−1 and tk = tk−1 + ∆t:

Φk = Φ(tk, tk+1) = eF∆t = I6×6 + F∆t+
1

2!
F 2∆t2 + ... =

[
Θk Ψk

03×3 I3×3

]
(1.18)

with Θk ∼ I3×3 − ∆tbω̂×c + ∆t2

2 bω̂×c
2 and Ψk ∼ −I3×3∆t + ∆t2

2 bω̂×c. The full details of
these calculations are given in [TR05]. In the final implementation of the Kalman filter, we
use the first order terms of the Θk and Ψk expressions.
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1.3.3.4 Kalman filter

Prediction
In summary, assuming we receive a measurement ωmeask and we have an estimate of the
quaternion q̂k−1|k−1 and the bias b̂k−1|k−1 at time step k − 1, the propagation equations for
our estimations are:

b̂k|k−1 = b̂k−1|k−1 (1.19)

ω̂k|k−1 = ωmeask − b̂k|k−1 (1.20)

q̂k|k−1 = exp

(
1

2
Ω(ω̂k|k−1)∆t

)
q̂k−1|k−1 (1.21)

The propagation of the covariance matrix Pk−1|k−1 of the error vector depends on the covari-
ance matrix of the process noise Qd and the state transition matrix Φk. The matrix Φk is
computed using ω̂k|k−1 in the expressions of Θk and Ψk. The noise covariance matrix Qd is
considered constant and has the following theoretical expression [TR05]:

Qd ∼

[
σ2
g∆tI3×3 −σ2

b
∆t2

2 I3×3

−σ2
b

∆t2

2 I3×3 σ2
b∆tI3×3

]
(1.22)

where σg = 1.5 × 10−7 rad/
√
s represents the uncertainty related to the ARW noise and

σb = 1.8× 10−6 rad s−3/2 the bias instability, obtained from the gyroscopes manufacturer. In
practice, the best results are not achieved with the previous values. An empiric tuning of σg
and σb is performed once the whole control system is functional. According to the Kalman
filter equations, the matrix Pk|k propagation is computed:

Pk|k−1 = ΦkPk−1|k−1Φ
T
k +Qd (1.23)

Update
The update phase of the Kalman filter will use the difference between our prediction q̂k|k−1

and the new star camera measurement qmeask . This difference is called innovation, zk, and it
will be equal to the angular part δθmeask of the difference quaternion δqmeas = qmeask ⊗ q̂−1

k|k−1.
The measurement model will be as follows:

zk = δθmeask ≈Hx̃k + nmeask (1.24)

whereH =
[
I3×3 03×3

]
and nmeask is the star camera measurement noise, characterized by a

covariance matrix Rk. Then, the covariance matrix of the innovation is Sk = HPk|k−1H
T +

Rk and the Kalman gain results Kk = Pk|k−1H
TS−1

k . Once we calculate the previous matri-
ces, we can start the update:

x̃k|k = Kkzk =

[
δθ

∆b

]
=

[
2v

∆b

]
(1.25)

δq =



[
v

√
1− vTv

]
, if vTv ≤ 1

1√
1+vT v

[
v

1

]
, otherwise

(1.26)
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q̂k|k = δq ⊗ q̂k|k−1 (1.27)

b̂k|k = b̂k|k−1 + ∆b (1.28)

ω̂k|k = ω̂meask − b̂k|k (1.29)

Pk|k = (I3×3 −KkH)Pk|k−1(I3×3 −KkH)T +KkRkK
T
k (1.30)

After finishing this steps, the loop restarts propagating the estimated states until a new
measurement is received and the update is performed again. However, there exists a delay
of a few seconds between the trigger of the star cameras and the reception of the solution.
To solve this issue, the qmeask measurement is propagated until the current time step k, using
propagation matrices calculated since the instant k−N where the image was taken. The details
of these issue are explained in the appendix C. In case the star cameras are not working, a less
accurate absolute position measurement is available using a magnetometer and GPS data.

1.4 Commands and Telemetry system

In this section, we will discuss briefly the different communications and software used to get
the telemetry data from BETTII. The payload has an on-board computer operating a Linux
kernel, called Ford, running different processes such as the star camera solutions finder or the
operation of the science detectors. It was specially built to withstand the harsh conditions
during flight. Another device, a cRIO 9038 from National Instruments that we call Boop, has
a CPU running a Real Time software that computes the Kalman filter and a FPGA for the
applications that require accurate timings like the control loops.

Figure 1.11: Ford and cRIO computers.

All the telemetry data from Boop, such as the covariance matrices and the estimated state
of the Kalman filter, is sent via a TCP communication to Ford, that parses and compresses
the data before sending it through the downlink [Vil14]. At ground, a common PC running
a specially developed Java software called Aurora can read all the coming data and store it
in an archive. Aurora operates all the different systems in BETTII, so it is also used to send
different commands and change the different subsystems behaviour, modifying, for instance,
parameters of the blob finding algorithm or the different PID gains.
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During flight, the downlink and uplink communications are managed by an on-board device
called CIP that is provided by the CSBF balloon facility. The CIP is used routinely in all
the CSF balloon programs and has mature electronic equipments for telemetry, command and
tracking. On ground, a transceiver is connected to a PC running Aurora, that will process all
the messages and send the commands.

When the payload is not in flight configuration, the CIP is substituted by a wireless router.
The use of a router for the communication provides more features such as remote desktop that
eases the testing and debugging of the systems.

Figure 1.12: Main GUI of the Aurora software.
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Flight Campaign

NASA and other agencies organize balloon launch campaigns year-round across multiple con-
tinents. The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas, was the location
for BETTII’s spring flight campaign. For a typical launch, the scientific payload is attached
on the bottom of a 100m long train that includes a parachute and a ladder. The top of the
ladder is attached to the bottom of the large helium-filled balloon. High-altitude balloons
fly between 30 and 40 km, above the 99% of the atmosphere, which make them particularly
suited for studying the universe at infrared, far-infrared and sub-millimeter wavelengths.

At these altitudes, temperatures are around 240K (about −33◦C), while the air pressure
is 0.5% of the sea level pressure (about 5 mbar). There are also high altitude winds, large
laminar flows that move the balloon and payload as one. These disturbances excite pendulum
motions which are typically of the order of a few arcminutes and have periods of a few to
many tens of seconds.

The payload’s temperature distribution is influenced by the air temperature, the sunlight
and the infrared radiation of the Earth, which can result in complex temperature gradients
across the instrument. For this reason, several thermometers were installed on the structure
of BETTII to study the temperature distribution. The flight during this campaign is at night,
where a better temperature uniformity is expected.

Cosmic rays can also affect balloon experiments, damaging the electronics. However, this
is more taken into account for long-duration flights around Antarctica, where payloads are
exposed to the cosmic rays environment for many weeks.

17
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Figure 2.1: BETTII balloon launch. On the left, the payload is captured by the launch vehicle
"Big Bill", until the balloon is inflated and released. The parachute assembly can be seen in
orange, connecting the bottom of the balloon with BETTII.

2.1 Data analysis tools development

All the information gathered from the payload is sent through the telemetry down-link and
stored in an archive created by the Aurora software. Usually, to plot all this information, an
open-source tool called KST plot is used. KST reads the several binary files representing each
field of data and draws them in X-Y or Fourier transform plots. It has a very intuitive user
interface allowing different styles and saving the configured sessions for a later use.

However, KST is not intended to generate new data from the existing information and
that is a very useful feature that the BETTII team wanted. This need is why one of the main
tasks during this launch campaign was to develop software capable of processing all types of
data and generate more useful information for debugging and analysis1. The language used
was Python because it is very common in astronomy and it was understandable by all the
team. The main libraries used for the development are:

– NumPy, a fundamental Python library that provides numerical arrays and functions

– SciPy, a scientific Python library, which supplements and slightly overlaps NumPy.
NumPy and SciPy historically shared their code base but were later separated.

– matplotlib, a plotting library based on NumPy

– pandas, a data analysis and manipulation library.

1GitHub repository: https://github.com/androidside/pythonFlightDataProcessing

https://github.com/androidside/pythonFlightDataProcessing
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Figure 2.2: A KST session showing plots of the BETTII control system.
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With this software, which adapts to Aurora’s archiving system and deals with specific issues
such as parsing errors, many interesting plots can be obtained that will be shown later on
this document. A good example of the adequacy of this tools over KST are the figures that
were designed for the science team to show in real time the information from the four FIR
detectors during flight (figure 2.3). Unfortunately, the detectors were not cold enough during
flight in order to provide useful information.

Figure 2.3: Real time signal processing of the detectors. Developed for the scientific team of
BETTII. The data shown in the figures is taken with bad conditions and is not useful.

2.2 Pre-flight tests

Before launch, a lot of work is involved, not only transporting the payload to the launch
facilities but also tuning the different subsystems of BETTII and running several tests. The
work during a flight campaign is very special, trying to fix and improve every unexpected
event before the day of the launch. One of the main problems during this campaign was the
Dewar, as it had a cold leak and we couldn’t refrigerate enough the detectors to obtain relevant
scientific data. In addition, one wheel of the CCMG started to fail, which was a system that
had never failed before. Luckily, all these problems were solved by the team in order to be
ready on June 2, the nominal launch day.
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In the weeks before the launch, at CSBF, different tests of the control system were done.
During the day, if the other members of the team allowed us, we performed hanging tests
to determine the PID gains of the CCMG and momentum dump control loops for different
scenarios. During the night we could obtain star camera solutions, that allowed us to test the
attitude estimation and tune its different parameters.

Once all the subsystems were ready and the Dewar was again assembled to the telescope,
after solving the cold leak, we could perform more complete tests hanging BETTII from a
crane outdoors at night. The results from that test were not very successful. The control
system is designed to withstand the perturbations at high altitudes. The winds of that night
were too strong to counteract and point to a bright star. All the following hanging tests were
performed indoors. There, without large perturbations and the total mass loaded, we could
extract more data such as the inertia Jz in azimuth.

Figure 2.4: Indoors and outdoors hanging tests of BETTII

2.2.1 Inertia value measurement

The value of the inertia Jz commented in the section 1.3.2 is important to command properly
the momentum dump. The moment of inertia depends on the mass distribution of BETTII
and it can change every time we add or remove a component. For this reason, it has to
be calculated with a simple procedure shortly before the launch. This procedure consists
on applying a constant torque τCCMG in order to measure the azimuth acceleration ω̇ while
hanging from a crane. A constant torque is commanded by rotating the CCMG wheels’ gimbal
at a constant rate. Following the equations 1.3 and 1.2 and according to the conservation of
momentum, we can express:

Jzω̇z = τCCMG = 20.8 θ̇ cos θ (2.1)

The results of this procedure, realized three days before the launch, are shown in the
figure 2.5. From the data obtained, an average torque τCCMG of 0.184 Nms and acceleration
ω̇ of 11 × 10−5 rad/s2 were measured. Thus, the resulting estimated inertia value is Jz =

1070.4 kg m2. The same value was obtained on the previous flight campaign at Fort Summer
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on 2016. This confirms the expected result, because no design changes were applied that
affected the weight distribution nor the inertia of the payload.

Figure 2.5: Measured azimuth velocity, commanded wheels’ angle, torque and azimuth accel-
eration during the test performed to estimate the Jz value.

2.3 Flight

The launch, initially planed for the 2nd of June, was postponed to the 8th of June due to
the bad weather conditions during that week. The extra time was useful to perform addi-
tional flight rehearsals where the roles of every member of the team were clarified. I was the
responsible to monitor different data during the ascension, such as the temperatures of the
90 thermometers distributed along the structure or the currents consumed on every voltage
line. Once at float, when the conditions are more stable, we could start to operate the control
system.

The preparations started at 12:15PM, when the flight batteries were connected, Ford was
turned on and the filling of the Helium tank of the Dewar had started. After the final checks,
at 15:00, the CSBF staff attached BETTII to the launch vehicle "Big Bill" and it was moved
to the launchpad. At 18:20 the balloon filling started. The launch occurred at 19:11. Some
problems happened during the ascension. The altitude provided by the GPS stopped working
when we crossed 12000 m of altitude (figure B.6). It seems that the change on the dynamic
platform model of the MAX-M8Q GPS module was not applied, as the default mode has a 12
km limit on altitude [uBl17].

We couldn’t accelerate the CCMG wheels during the flight. The possible cause can be
a lack of communication between the Galil controllers and Ford. Temperatures dropped
drastically, below −50◦C. The several heaters installed were not enough to maintain the
temperatures above −10◦C at the devices of interest such as the star cameras. Probably due
to the harsh conditions, the auto-focus mechanism couldn’t work properly and it was difficult
to obtain star camera solutions.
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However, despite all the problems that we faced, usual on a first flight like this one, we
achieved great goals like braking the payload using only the momentum dump mechanism.
To achieve that, we had to change the PID gains and see the response in real time. This is a
demonstration of the good performance and the importance of the telemetry system and real
time data representation. In addition, we could tune the star cameras software parameters to
finally obtain solutions and analyze the estimator behaviour.

Towards the end of the flight, at 3:00AM, we started to lose a lot of telemetry packets and
we had big gaps of time without any information. We tried to connect to a different ground
station located at Fort Summer, NM, that was closer to BETTII at that time, but the problem
remained. At 7:00AM the descend started. Before the descend, all the systems were turned
off for security reasons.

Unfortunately, when the parachute deployed, it detached from the payload and BETTII
plummeted 40km in free fall to earth. The consequences of the impact were severe, with
the complete destruction of all the systems. Luckily, the SSDs where the telemetry data was
stored survived and the information could be recovered, including the moments where the
transmission failed. At figure 2.6 we can appreciate how the recovery of this data improved a
lot the information received through the CIP, having a higher rate of data points and solving
the several telemetry gaps, especially towards the end of the flight.

Figure 2.6: Measured azimuth velocity. Left, information from the telemetry received during
flight. Right, information extracted from the disks after the flight.
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Flight Data

In this section, we will show some information extracted from the recovered disks. In the
appendix B there are more figures showing data during the entire flight, such as the altitude,
the temperatures, the gyroscopes readings, the current consumption or the magnetometer
measurements. We can observe on these figures how there are several gaps due to the Boop
and Ford reboots, particularly towards the end of the flight. These reboots were performed
in order to solve the telemetry problems.

3.1 Gyroscopes

A first analysis we can perform is to study the power spectral density (PSD) of the three gyro-
scopes. In this manner we can extract frequential information about the type of perturbations
we found during the flight. If we focus on the moments where we didn’t actively control the
attitude and after braking the payload movements caused by the ascension, we observe that
dominant frequencies are very low. This phenomenon is caused by the pendulum motions
resulting from the attachment to the balloon.

Figure 3.1: Power spectral density of the three gyroscopes during flight

25
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σgx 0.37

σgy 0.42

σgz 0.43

Table 3.1: Estimated noise uncertainties of the three gyroscopes during the flight, in arcsec/s.

If we filter these low frequencies, below 3 Hz, we can obtain an estimate of the gyroscopes
noise, shown in the table 3.1. The uncertainty values, of the order of 0.4 arcsec/s, are two times
higher than the expected theoretical values specified by the manufacturer. This increment is
caused by a problem in the close-loop algorithms inside the electronics of the gyroscopes.
The problem was known by the manufacturer, and the solution was to inject a random phase
perturbation in the closed loop. This had the effect of increasing, by a factor of 4, the noise
variance of the gyroscopes.

(a) Measured velocities by the three gyro-
scopes.

(b) Azimuth gyroscope. High-pass filtered at
3 Hz.

Figure 3.2: Signal from the gyroscopes.

3.2 Momentum dump

During the flight, the CCMG controller lost connection with Ford, and consequently we tried
to brake the payload using only the momentum dump. After tuning the PID gains, we could
limit the oscillations of the azimuth velocity below 200 arcsec/s.

These results confirm the excellent performance of the momentum dump mechanism, a
component specially designed for BETTII. The fact of being able to maintain stability and
brake the resulting oscillation from the balloon ascension allowed us to obtain enough good
star camera images. In addition, we could obtain images of a star at the NIR detectors during
a short period of time.
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Figure 3.3: Commands of the momentum dump during the braking of the payload. To generate
the command u(t) (right), a scaling gain is applied after the sum of the three PID contributions
(left). There exists a software limit of 100000 counts per second, that is equal to 4.7 rpm.

Figure 3.4: Measured azimuth velocity during the braking.
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3.3 Attitude estimator

Regarding the attitude estimator, we obtained enough information to evaluate its behavior.
Despite the auto-focus mechanism failure, we were able to get good star camera images and
the star camera solution finder software could measure an absolute attitude of BETTII. These
star camera solutions were critical for the correct behaviour of the estimator and allowed us
to know where the telescope was pointing at every time. In this section we will show some
results from the attitude estimator, archived from 02:09AM to 4:13AM, where we obtained a
total of 50 star camera solutions.

Figure 3.5: Evolution of the estimated attitude and the star camera measurements. There are
two times where the estimator was intentionally reset to zero during the flight.

3.3.1 Covariance matrix

The covariance matrix P , describes the uncertainty we have in the state estimation. Neglecting
the crossed elements and focusing only on the diagonal, we can obtain a simple visualization
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of the attitude uncertainty. The first three values of the diagonal correspond to the state
δθ. The uncertainty of this state, due to the small-angle approximation, can be interpreted
directly as the uncertainty in attitude on the gyroscopes reference frame G. In the figure 3.6a
we can see how there is a certain correlation between the first three values of the matrix P
diagonal.

(a) P (b) Prot

Figure 3.6: Evolution of the first three diagonal elements of the matrices P and Prot

The main cause of this correlation is the way the star camera solutions are propagated.
A solution provided by the star camera software has an uncertainty two orders of magnitude
higher in ROLL than in RA and DEC. In the figure 1.5 we can see an example of a star
camera solution, where the roll uncertainty is higher. Then, this solution is rotated 45 degrees
in order to be operated on the gyroscopes reference frame. What we practically see is the roll
uncertainty projected to the two other components.

In order to obtain a better representation of the attitude uncertainty of the telescope, we
can undo the rotation G

Sq that we apply to the the star camera solutions, to the upper left
3× 3 block P3×3 of the matrix P :

Prot = S
GM P3×3

S
GM

T (3.1)

where S
GM corresponds to the rotation matrix associated with the quaternion S

Gq, a rotation
of approximately −45 degrees around the yg axis.

S
GM = (2q2

r − 1)I3×3 − 2qrbv̂×c+ 2vvT (3.2)

with S
Gq = [v qr]

T . In the figure 3.6b we can see the result of this rotation. With Prot, the
uncertainties are more uncorrelated, obtaining lower values for the RA and DEC uncertainties,
the most important coordinates for the telescope. This result demonstrates the importance
of having the star cameras pointing to where the telescope will see. This is one of the main
reasons why the star cameras are located at an elevation angle of 45 degrees.

An approximation of the uncertainties in the telescope’s attitude is shown in the figure 3.7,
relating the square root of the first element of the diagonal of Prot to the ROLL, the second to
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the DEC and the third to the RA coordinates. When we were receiving star camera solutions
frequently, the uncertainties arrived below 4 arcseconds for both RA and DEC coordinates.

Figure 3.7: Evolution of the uncertainties in the attitude of the telescope.

3.3.2 Post-flight estimation

In the figure 3.5 we can observe how there are instants where the estimated attitude is not
valid, due to resets of the estimator. A good exercise is to implement the Kalman filter on a
common PC with Python that will use the measurements stored in the disks in order to have
a good estimate of the attitude of BETTII, even at the instants were the estimator was not
working. To do that, we will use the same equations implemented on Boop and described in
the section 1.3.3.4.

The result of this implementation is shown at figure 3.8, where the attitudes obtained are
very similar to the ones on the figure 3.5 but filling the gaps where the estimator was reset
to zero. One of the advantages of estimating the attitude after the flight was the possibility
to estimate the telescope’s attitude even before we started receiving star camera solutions.
However, this task became impossible because there were several instants where the whole
system was rebooted and we lost information of the gyroscopes during large periods of time,
as we can observe on the first instants of the figure B.2.

Regarding the biases, the gyroscopes are very precise and have small and stable biases
according to the manufacturer. Consequently, the estimated biases are very low, of the order
of tenths of arcseconds per second (figures B.4 and 3.9). The error induced by this low order
of magnitude is very similar to the possible misalignments between the gyroscopes or the
residual errors on the reference frame measurements. We can apply a matrix to the gyroscopes
measurement ωmeask that will correct any angular error between reference frames or even the
orthogonalization errors and scale factor errors. To estimate this matrix, two Kalman filters
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Figure 3.8: Evolution of BETTII’s attitude, estimated after the flight. The estimator was
implemented in Python, using the same gains as in flight, the case of the figure 3.5.

Figure 3.9: Evolution of the estimated gyroscopes biases. The estimator was implemented in
Python, using the same gains as in flight.
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have been proposed [Riz16] and implemented in Python.

Here, however, we propose an additional Kalman filter that will only estimate the attitude
and not the biases. That will be equal to the presented filter but assuming the biases to be zero
(equivalently, forcing the σb parameter of the Qd matrix to be zero), reducing the dimensions of
the state vector from six to only three elements. Apart from the high computational advantage
that this supposes, this filter will not assume any error to the biases and it will avoid bad
propagations caused by a wrong estimation of the biases.

Figure 3.10: Evolution of BETTII’s attitude, estimated after the flight. The estimator is a
reduced Kalman filter that uses only the state δθ.

In the figure 3.11 we can see a comparison of the estimated telescope attitude uncertainty,
calculated from the covariance matrix P in the manner explained in the previous section. We
can see how the uncertainties from both filters are below the ones calculated during flight. In
addition, the proposed reduced Kalman filter estimates an uncertainty lower than 1.8” when
the star cameras were frequent.
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Figure 3.11: Comparison of the telescope attitude uncertainties obtained from the two different
Kalman filters implemented on ground, after the flight





Conclusions and future work

This project was intended to analyze the data obtained during the first flight of BETTII. An
aerospace project such as BETTII includes many subsystems that require experts in different
disciplines. Since my specialty in this last year of master in Toulouse was in automation and
estimation, I focused on the control system. However, given my training as a telecommunica-
tions engineer in Barcelona, I could also collaborate on other aspects such as the design and
debug of electronic circuits and software development in C ++, Python, MatLab, LabView
and Java for the control and telemetry system.

The main conclusion that can be drawn from this experience is that carrying out a complex
project such as BETTII successfully is not easy. We had a small and highly experienced NASA
team, who worked together, anticipating and taking care of all the possible problems in detail
but, unfortunately, a small failure at the time of descent ended up destroying a payload
that took years in the making. This incident was a tough shock to the team but the initial
pessimism gave way to the redesign and improvement of BETTII. Some of these improvements
focus primarily on correcting the problems seen during the flight.

In order to avoid the future cold leaks seen during the campaign, the team is currently
working on a new Dewar design, where there will be no such marked emphasis on lightness
but on a better robustness. In addition, a better design of the tests before the flight could
have avoided the problems of the GPS and the controllers of the wheels of the CCMG.

Regarding the control system, two main improvements are proposed. The gyroscopes used
to date, the SRS-2000, offer very small biases. The error induced by these biases was much
smaller than that related to the ARW. The consequence of this is that the Kalman filter
considered very stable and small biases. Reducing the state vector in just δθ gave similar
results but with the computational benefits of reducing the order of the filter in half. There
were not enough resources to ensure excellent orthogonalization of the gyroscopes, and this
was a reason for discussions since it was not possible to know whether the sources of the errors
were from the estimator, from bad orthogonalizations or from misalignments of the gyroscopes
with respect to the star cameras. In order to find answers to these questions, other estimators
were developed that attempted to find possible residual errors.

In order to avoid that kind of problems, what is proposed is to use gyroscopes that come
already orthogonalized from the factory. The proposed gyroscopes are from the same man-
ufacturer, the TRS-500 of Optolink, with some characteristics worse than those used up to
such as higher biases. With this gyroscopes, the original Kalman filter with bias estimation
will have more sense. Another improvement that would reduce the errors caused by the chain
of rotations involved in the attitude calculation of the telescope is to mechanically mount and
align the star cameras and gyroscopes. In this way the reference axes of the star cameras and
gyroscopes are nominally the same.

Most of the mechanical, optical and electronic components, as well as the software infras-
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tructure, were specially designed and built from scratch for BETTII. It was not expected,
then, a complete success in BETTII’s first flight from the scientific point of view. Despite
that, engineering wise, the flight was a success and it almost completed all the set goals for the
flight. We can state that if BETTII receives enough funds to move forward, it will demonstrate
with success the suitability of the double Fourier interferometry in space. This would lead to
a new generation of space-based telescopes, capable of increasing considerably the obtained
resolutions until now in the infrared region.

Personally, I highly value this experience, where I had the opportunity to work with
high-level professionals that are doing cutting-edge research in a project that has been in
development for over 6 years and I was able to see, first-hand, how its first launch materialized.
Not only have I acquired new technical knowledge, but also I have seen the general view of
how things are planned and organized and how a big and complex mission like this is carried
out.



Appendix A

Equatorial coordinate system

Figure A.1: BETTII reference frames on the equatorial coordinate system. Credit: Maxime
Rizzo [Riz16]

In the figure A.1, the celestial sphere is shown as the outermost circle. A location of a star
(yellow) in the sky is represented by a pair of spherical coordinates, the right ascension (RA)
and the declination (DEC). The zero for both RA and DEC coordinates is the vernal equinox,
that corresponds to one node of the intersection between the celestial equator and the ecliptic
plane.
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Appendix B

Flight plots

Figure B.1: Measured velocities from the three gyroscopes, in arcesc/s.
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40 Appendix B. Flight plots

Figure B.2: Detail of the gyroscopes at the same time window of the estimator figures 3.5 and
B.4

Figure B.3: Detail of the gyroscopes at the moment of launch.
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Figure B.4: Estimated gyroscope biases, in arcsec/s.

Figure B.5: Absolute error between the star camera measurement and the estimated attitude,
in the star camera reference frame. The estimations are performed with a Python code on
ground. Three different Kalman filters were used, with the same gains. The fifteen states
Kalman filter [Riz16] estimates, in addition to the 6 states presented in this thesis, the nine
elements of the matrix applied to the gyroscopes measurements.
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Figure B.6: Measured altitude from the GPS [uBl17]. The readouts failed above 12 km, issue
explained briefly in section 2.3

Figure B.7: Azimuth and Pitch measured by the magnetometer HM3500. The pitch is mea-
sured from a built-in accelerometer.
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Figure B.8: Currents measured by the current sensors on the main power board. The im-
plementation of this feature was one of my tasks during this internship. Sudden changes in
the consumption at 36V and 28V lines are caused by turning on and off the heaters. The
high, oscillating consumption in the 12V power line is caused by Ford and Boop, the on-board
computers.

Figure B.9: Unwrapped azimuth measured by the magnetometer during the flight. It is the
same azimuth data shown in figure B.7 but with the azimuth information unwrapped.
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Figure B.10: Temperatures of BETTII during flight, measured from five different thermome-
ters.



Appendix C

Delayed star camera solution

The star camera solution finder software takes several loop cycles, N in general, to calculate
and send the attitude measurement qmeas and its uncertainties R. Consequently, there exists
a delay of a few seconds between the trigger of the star cameras and the reception of the
solution.

More in detail, at an instant k the estimator will receive a measurement qmeask−N that corre-
sponds to an image taken at the time step k−N . To calculate the actual measurement qmeask

at the instant k, we will need to propagate qmeask−N and its covariance matrix Rk−N . These
propagations can be found following the equations 1.21 and 1.21:

qmeask =
k∏

i=k−N
exp

(
1

2
Ω(ω̂i)∆t

)
qmeask−N = Ck q

meas
k−N (C.1)

Rk = AkRk−NA
T
k +Bk (C.2)

where the matrices Ak and Bk are defined recursively as

Ak = ΦkAk−1 =
k∏

i=k−N
Φi (C.3)

Bk = ΦkBk−1Φ
T
k +Qd (C.4)

with Ak−N = I6×6 and Bk−N = 06×6.

When we trigger the star camera we will start to keep track of the matrices Ak, Bk and
Ck, and then we will apply them once the estimator receives the star camera measurement.
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Appendix D

Kalman filter Python code

The following code implements the 6 states Kalman filter used for the results shown in the
post-flight estimation section 3.3.2. This code is part of a project developed for this the-
sis and available in the following GitHub repository: https://github.com/androidside/
pythonFlightDataProcessing

class Estimator6(Estimator):
’’’
Class implementing the original 6 state Kalman filter.
’’’
EST_FILENAME=Estimator.EST_FILENAME+"6"
def estimate(self ,P0=0*np.eye(6),b0=np.zeros (3),q0=None ,Qd=np.eye (6),SCg
=5,ts=None ,te=None ,progress=False):

gyros=self.gyros.loc[ts:te] #cropping time of the gyros pd.Dataframe ()
, ts: start time , te: end time

if progress: #print progress of the estimator
start_time = timer()
printOn =0
print "Initializing ..."

if q0 is None: #initializing the estimated attitude quaternion
fig=gyros.index [0]
fis=self.sc.index [0]
if fig >=fis: #if gyros start later than the first SC solution

isc=next((i for i,ind in enumerate(self.sc.index) if ind >fig))
#first index of the SC where gyros are available

q0=self.sc.qI2G.iloc[isc -1] #nearest past starcamera solution
to the start of the gyros assigned to the quaternion

sc=self.sc.iloc[isc:]
else: #if gyros start before than the first SC solution

q0=self.sc.qI2G.loc[fis]
ig=next((i for i,ind in enumerate(gyros.index) if ind >fis)) #

first index of the Gyros where SC solutions are available
gyros=gyros.loc[ig:]
sc=self.sc.iloc [1:]

else: sc=self.sc.loc[ts:te]
nextSCindex =0
i0=gyros.index [0]
q_prop=q0

bias=b0
L=len(gyros.index)
props=[ q_prop ]*L
i_prop =[i0]*L
biases =[bias]*L
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Ps=[P0]*L

C=np.matrix ([[0.999999 , 0.000309 , -0.002822] ,[0.001062 ,
0.999995 , -0.0031] ,[0.00129 ,0.002992 ,0.999991]]) #gyros alignment matrix

P=P0
H=np.eye(3,6)
dt=0.01

if progress: print "Starting estimation:"
for j in range(L-1):

#Prediction
dt=(gyros.index[j+1]- gyros.index[j]) /400.
w=( gyros.iloc[j,:3]. as_matrix ())*(1/3600.* np.pi /180) -bias #

arcsec2rad conversion - bias
w=np.asarray(C.dot(w).T).T[0]
wx=w[0];wy=w[1];wz=w[2]
Ow=np.matrix ([[0,wz ,-wy,wx],[-wz ,0,wx ,wy],[wy,-wx ,0,wz],[-wx ,-wy,-

wz ,0]]) #Omega(omega)
A=expm (0.5* Ow*dt)
q_prop=Quat(A.dot(q_prop.q))
Theta=np.eye (3)-dt*vec2skew(w)
Psi=-dt*np.eye(3)
Phi=np.concatenate ((np.concatenate ((Theta ,np.zeros ((3,3)))),np.

concatenate ((Psi ,np.eye(3)))),axis =1)
P=Phi.dot(P.dot(Phi.T))+Qd

ind=gyros.index[j]
if nextSCindex < len(sc.index) and ind >= sc.index[nextSCindex ]: #

Update!
qmeas=sc.qI2G.iloc[nextSCindex]
dq=qmeas*q_prop.inv()
z=dq.q[:3]
Mrot=np.matrix

([[0.693865 ,0 ,0.720106] ,[0 ,1 ,0] ,[ -0.720106 ,0 ,0.693865]]) #matrix used in
LabView to rotate R to the Gyros ref. frame (~46 deg)

R=(SCg*np.diag(sc.iloc[nextSCindex ][[’ra_err ’,’dec_err ’,’
roll_err ’]]. tolist ()))**2 #measured uncertainties multiplied by the gain
SCg (=5 by default)

R=Mrot*R*Mrot.T
S=np.matrix(H.dot(P.dot(H.T))+R)
K=P.dot((H.T).dot(S.I))
x=np.asarray(K.dot(z))[0]
dq=x[:3]
db=x[3:]
n=dq.dot(dq)
if n<=1:

qd=Quat([dq[0],dq[1],dq[2],np.sqrt(1-n)])
else:

qd=Quat(np.array([dq[0],dq[1],dq[2] ,1])/np.sqrt (1+n))
q_prop=qd*q_prop

bias=bias+db
J=(np.eye (6)-K.dot(H))
P=J.dot(P.dot(J.T))+K.dot(R.dot(K.T))
nextSCindex=nextSCindex +1
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if progress: print "UPDATE! (%s/%s)" % (( nextSCindex +1),len(sc
.index))

props[j+1]= q_prop
biases[j+1]= bias
i_prop[j+1]= ind
Ps[j+1]=P

percentage =100.0*j/L
if progress and percentage >= printOn:

et=timer ()-start_time
print ’Estimating %0.1f%%’ % percentage
print "Elapsed time: %0.2f seconds." %et
if percentage >0: print "Remaining time: %0.2f minutes." % (et/

percentage *(100- percentage)/60)
print "Data duration: %0.2f minutes" % (L/2400.)
printOn=printOn +0.1

d={’qest’: props ,
’biases ’:biases ,
’biasX ’:[bias [0] for bias in biases],
’biasY ’:[bias [1] for bias in biases],
’biasZ ’:[bias [2] for bias in biases],
’RA’:[q.ra for q in props],
’DEC’:[q.dec for q in props],
’ROLL’:[q.roll for q in props],
’P’:Ps
}

self.est=pd.DataFrame(d,index=i_prop)
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Abstract — The Balloon Experimental Twin Telescope for Infrared Interferometry (BET-
TII) is a far infrared telescope on a balloon-based platform that will validate the interferometry
technique for future space telescopes. It is one of the most complex balloon projects carried
out at NASA-GSFC and it requires a lot of different subsystems. The work during this thesis
is centered around the coarse control system of the telescope’s attitude and the analysis of the
data collected during its first flight.
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NASA - Goddard Space Flight Center
Greenbelt, MD


	Glossary
	Introduction
	BETTII
	Design
	Interferometry

	Sensors
	Star cameras
	Gyroscopes

	Control system
	Elevation actuators
	Azimuth actuators
	Attitude estimation

	Commands and Telemetry system

	Flight Campaign
	Data analysis tools development
	Pre-flight tests
	Inertia value measurement

	Flight

	Flight Data
	Gyroscopes
	Momentum dump
	Attitude estimator
	Covariance matrix
	Post-flight estimation


	Conclusions and future work
	Equatorial coordinate system
	Flight plots
	Delayed star camera solution
	Kalman filter Python code
	Bibliography

