

Space Systems Laboratory

Development of High-Altitude Technologies

University of Maryland Balloon Payload Project

Last edited: March 11, 2016

Overview

- Introduction
- Supersonic
- Balloon Attitude Determination And Stabilization System
- Bach's Box
- Tracking System

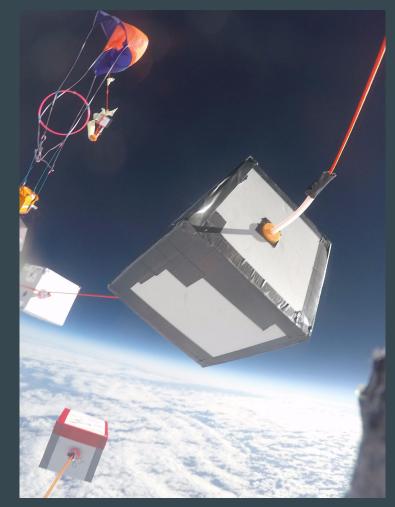


Photo courtesy of Bach's Box

Balloon Payload Program (BPP)

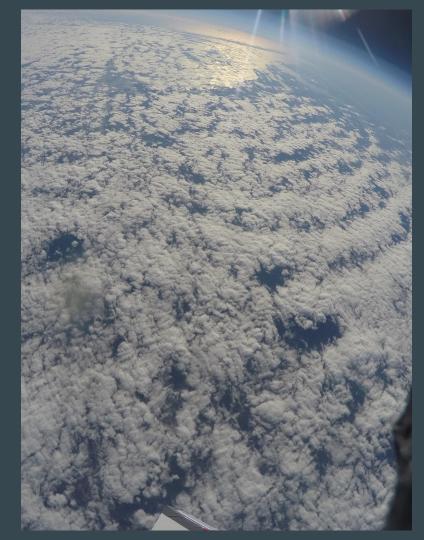
- Started at UMD in 2003
- Funded through the MD Space grant Consortium
- Mostly undergraduates
- Freshman: Recruit and keep students interested in aerospace engineering
- Upperclassmen: Design and build meaningful flight experiments
- Educational outreach:
 - Maryland Day (April 30th)
 - NS-50: public launches

Fall 2015

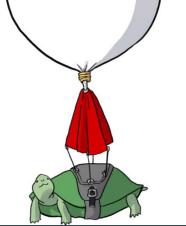
Typical Launch Conditions

- Two launches in April which typically start at 4:30 AM
 - Balloon release, tracking, and recovery/debrief
- Extreme conditions during flight: -55
 ^oC min temperature, 1kPa min pressure, 70m/s max air velocity
- Payloads must be lightweight and follow federal and University regulations
- 20m nylon payload string with parachute and a tracking module

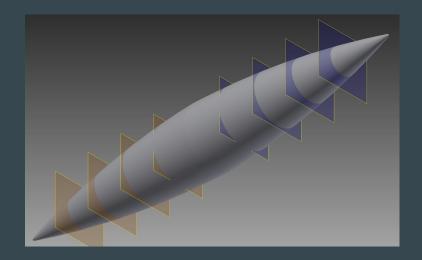
Rule of Ballooning: If there is a wide open field, the payloads will fall on top of the tallest tree.



Photos



Right: Bach's Box



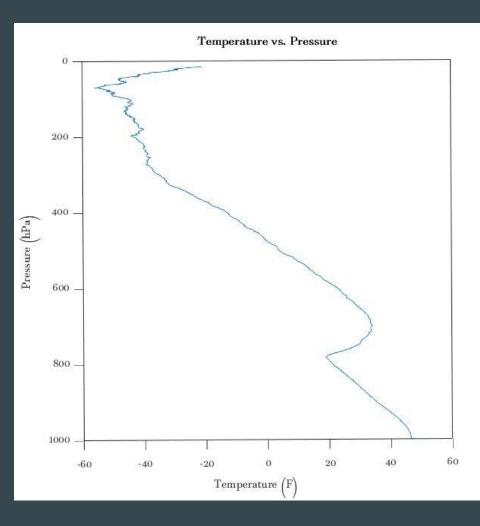
Chesapeake Bay from TurtleNest

Supersonic

- Designed to drop from ~75,000ft and reach Mach 1 during descent
- Many complex subsystems
 - Requires high reliability
 - Redundant tracking, parachute, and control systems
- Fiberglass exterior aerodynamic shell
- 3d printed internal structure

Balloon Attitude Determination And Stabilization System

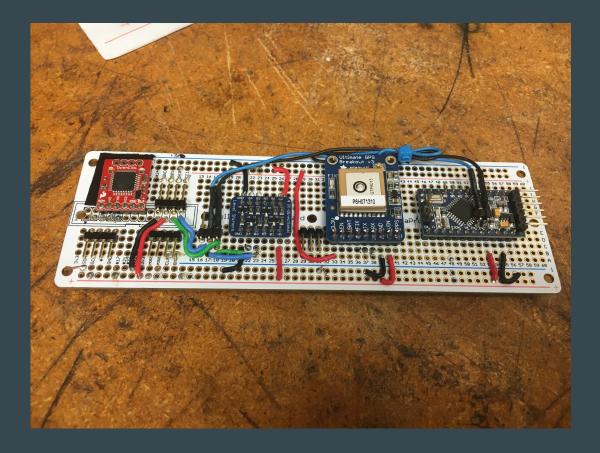
- 2-axis payload stabilization system lacksquare
 - Uses servo motors for tilt stabilization
 - Horizontal reaction wheel for attitude stabilization
- Can stabilize an arbitrary CubeSat-sized payload
- Custom carbon fiber structure
- Entire payload+host weighs only 4.5lbs
- First payload controlled by our new payload electronics platform: Balloonduino
 - Arduino Mega compatible board with payload-specific additions
 - Reduces cost and "boilerplate" work for payloads


"Host" payload Tilt motors Box

Electronics

Reaction Wheel

- Version 1

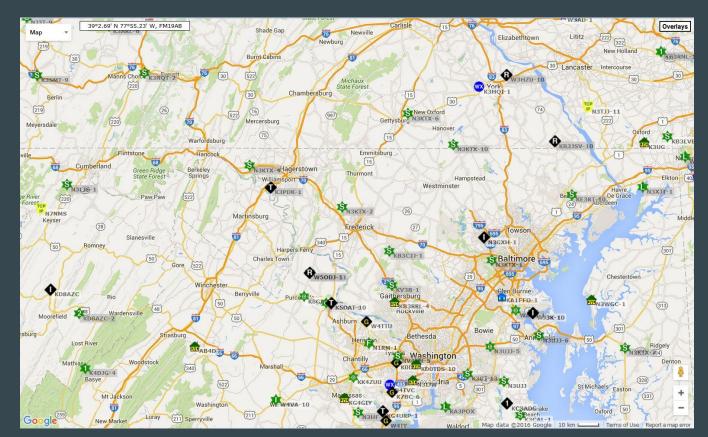

- Could accurately measure temperature and pressure.
- Was very reliable but had difficulty with relative humidity.

Specifications of Version 1 and a Vaisala RS-92D sonde

Temperature		DS18B20	RHT03	BMP085	Vaisala RS-92D
	Operating	-55°C to			
	Temperature	+125°C	-40~80° C	-40 to 85°C	-90 to 60°C
	Accuracy	±0.5°C	±0.5°C	±2°C	±0.5°C
Humidity					
	Humidity range		0 to 100%		0 to 100%
	Accuracy		±2%		±5%
Pressure					
				300 to 1100	100 to 1080
	Pressure range			hPa	hPa
	Accuracy			0.03 hPa	1 hPa
	Pressure range				1 to 100hPa
	Accuracy				.6 hPa

- Version 4
 - GPS tracking.
 - Multiple temperature and pressure sensors.
 - Weatherproof humidity sensor.

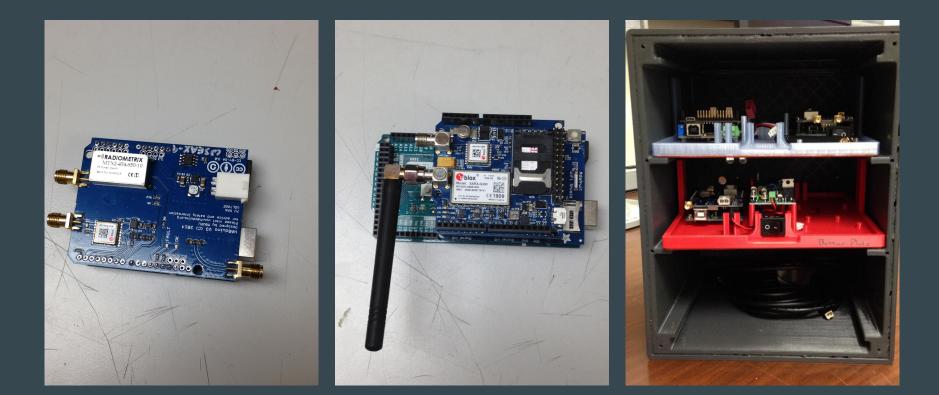
- Experimental Unit (Version 3)
 - Multiple units it communicates by an i2c bus.
 - LIDAR tells distance away from objects up to 40m.
 - Sonar resolution of objects as small as 1mm.
 - Ozone our high altitude launch into the stratosphere.



Tracking

- Tracking required over full flight envelope of balloon
 - 100k+ feet altitude
 - 30+ miles horizontal distance from base (worst case)
 - \circ ~ Non-line-of-sight mode below 1000 feet AGL altitude
- Primary tracking is two redundant 2m-band (144.39 MHz) radios over APRS
 - Packetized, unidirectional (air to ground)
 - Operates on ametuer (HAM) frequencies we have many licensed operators!
 - Packets pushed to internet via ground stations
- Secondary tracking over cellular phone network (low altitude)
- All electronics run on Arduino platform
- Ground functions coordinated from lead chase van

Tracking - APRS Ground Stations



From aprs. fi

Tracking - Next Steps

- Live bi-directional communication
 - APRS is sparse and one-way
 - Bi-directional necessary for some in-development payloads
 - Continuous, real-time telemetry could open up new avenues of design
- Custom telemetry software
 - Helpful in enabling bi-directional communication
 - Allows better visibility into tracking data
 - Could drive steerable antenna better reception

Tracking - Pictures

Typical Launch Schedule

<u>Friday afternoon</u>

- Pick up vans
- Final ground track & weather predictions
- Launch decision: Sat or Sun
- Flight readiness review of all payloads

Saturday morning

NS -51 Pizza Debrief


- 430am meet at SSL and load vans for 5am departure
- 7am gather in Clear Spring, MD, for payload string assembly
- 8am balloon inflation & final payload closeout
- 830am balloon release then all tracking vehicles load up and chase
- 10am payloads land somewhere (MD, PA, WVa, VA)
- 11am payloads tracked and found, usually in the top of tallest tree
- 1pm eat lunch at Pizza place and debrief

Contributions of BPP

- Opportunities for paid undergraduate engineering experience
- This program has gotten our name out there.
 - CanSat Win, NFB Coverage, Altitude Record, CO Workshops
- Outreach to Comm Colleges, and High Schools
- Faculty at other schools rely on our launch capability
 - UMCP, UMBC, UMES
 - Morgan State University, Hagerstown Community College
 - Capitol Technology University, Carver Center High School
- Increased enthusiasm for and understanding of engineering
- Past Balloon Program leaders now working at JPL and SpaceX

Thank you! Any questions? @UMDNearspace

